Experimental and Computational Studies of Molecular and Lattice Symmetries of Energetic Materials at High Pressure

Suhithi (Su) Peiris

Research and Technology Department
Naval Surface Warfare Center - Indian Head Division
Indian Head, Maryland 20640

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2002		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Experimental and Computational Studies of Molecular and Lattice Symmetries of Energetic Materials at High Pressure				5b. GRANT NUMBER		
Symmetries of Energetic Waterials at fligh Fressure				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center - Indian Head Division, Research and Technology Department Indian Head, MD 20640				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT SAR	OF PAGES 18	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Overall Research Objectives

To study energetic materials of interest to the Navy/DoD at the high-pressure and high-temperature of detonation.

- To study the initiation mechanism of detonation
- To learn the phase, lattice, and molecular symmetry, and measure theoretical maximum density (TMD) of a material at high pressure and temperature just before initiation
- To understand exactly what chemical bonds are most energetic and why, at the pressure and temperature of detonation
- To model the global kinetics and reaction mechanisms of energetic materials during detonative reactions

Impact of this Basic Research

- This research generates phase and density data essential for **deciding if a new** material could be used in a weapon
- The relevant data and thermodynamic parameters for each material is presented and published **to enhance predictive modeling** and simulation software.
- The results **transition into all areas of energetic materials systems** in keeping with the NAVSEA Grand Challenges of:
 - Sixth Generation Energetics
 - Assured Lethality/effects
 - Scalable Combat Power Materials
- Successful completion of the goals of this program will help develop Navy After Next enabling technologies such as:
 - High Strength Materials
 - Long-life, High-Energy, Insensitive, Solid Propellants
 - Energetic Structural Composites

Experimental Methodology

Use **Diamond Anvil Cells** (DAC) with coil Heaters (HDAC) to achieve

- High pressures (P) to 10 GPa (100 kbars)
- High temperatures (T) to 300°C (up to 1000 °C possible under Argon)
- Any P, T in that range

Angle-Dispersive X-ray Diffraction

Theoretical Method

- The zero degree isotherm may be calculated directly from ab-initio techniques
- Both Hartree-Fock method and Density Functional Theory have been used
- Commercially available computer programs such as GAUSSIAN 98^{III} and CRYSTAL 98^{III} provide a starting point
- Rigid molecule approximation with additional refinements such as:
 - Self-consistent geometry optimization (the crystalline lattice and the molecule structure)
 - Electronic correlation corrections to correct the total energy
- Calculations require state of the art computational capability and sometimes take 2-4 days to complete
- ii. A. Frisch, M. J. Frisch, *GAUSSIAN98 User's Reference* (Gaussian, Inc., Pittsburgh, 1998).
- iii. R. Dovesi, V. R. Saunders, C. Roetti, et al., *CRYSTAL98 User's Manual*, University of Torino.

Results - Comparison of HMX, -NO₂ and -NF₂ analogs

 β -HMX = Monoclinic structure 2 molecules/unit cell ambient P,T density=1.91 g/cc

HNNX or ESW-21 = Orthorhombic structure 4 molecules/unit cell ambient P,T density=1.86 g/cc

HNFX = Rhombohedral structure 9 molecules/unit cell ambient P,T density=1.81 g/cc

HMX Compression at Ambient Temperature

β-HMX is monoclinic with space group: P2₁/c

3rd order Birch-Murnaghan Equation of State yields : Bulk Modulus: 8.9 GPa

Derivative: 46.5

Previous study by Yoo and Cynn (LLNL)
Bulk Modulus: 14.4 GPa Derivative: 13.3
non-hydrostatic using 7 data points to 10GPa

- We have a lot more (26) lower-pressure data.
- Also our data is on RDX-free HMX.
- Our $V_0 = 518 \text{ Å}^3$ as published in ICDD.

HNNX Compression at Ambient Temperature

- Ambient pressure orthorhombic lattice is stable to about 2.2 GPa.
- Above that pressure new peaks appear indicating a phase transition.

Isothermal EOS of HNNX

- The compression of the unit cell a, b and c axes flatten towards 2.0 GPa also indicating a phase transition
- Above 2.3 GPa, the ambient pressure orthorhombic lattice can no longer be assumed.

Univ. EOS formalism (using data to 2.3 GPa):

$$K_0 = 7.46 \pm 2.45 \text{ GPa}$$

$$K_0' = 20.0 \pm 7.3$$

HNFX Compression at Ambient Temperature

- The ambient pressure Rhombohedral (R-3) lattice is stable to 3.4 GPa, the highest pressure achieved in study.
- Decompression returns the ambient pressure structure with lower density!

High Compressibility of HNFX

Bulk Modulus: 2.0 GPa

Derivative: 44

Extremely compressible at nearambient pressure.

Decompresses with a larger volume than pre-compression V₀

A view down the c axis showing the packing of HNFX. Empty channels occur along the 3-fold axes at (0,0,z), a corner of the cell, and at (1/3, 2/3, z) and (2/3, 1/3, z) within the cell.

From: Chapman, Gillardi et al. *J. Org. Chem.*, **64**, 963 (1999).

Comparison

β-HMX = Monoclinic structure ρ=1.91 g/cc

Bulk Modulus: 8.9 GPa

Compressibility = 0.11

Derivative: 46.5

HNNX = Orthorhombic structure ρ =1.86 g/cc

Phase transition at 2.2 GPa

Bulk Modulus: 7.46

Compressibility = 0.14

Derivative = 20.0 ± 7.3

ND:

HNFX = Rhombohedral structure ρ =1.81 g/cc

Bulk Modulus: 2.0 GPa

Compressibility = 0.50

Derivative: 44.3

Preliminary Results - RDX single crystal diffraction

- Previously published phase transition of RDX at 3.5 GPa to a high-pressure phase.
- We intend to find the lattice symmetry of this high pressure and identify that phase.

Scanner

Computer

Compression of FOX-7 at ambient temperature: Lattice and molecular symmetry changes

FOX-7 = DiAmino DiNitro Ethylene (DADNE)

- •Monoclinic lattice is stable to 4.2 GPa (possibly a transition above 5 GPa)
- Some peaks indicate faster compression than others = anisotropic compression

• Above 1.1 GPa, the "b" axis (inter layer) compresses faster than the "a" or "c".

 Anisotropic compression but no change in lattice symmetry

Birch-Murnaghan: 3rd order

$$K_0 = 17.9 \pm 1.4 \text{ GPa}$$

$$K_0' = 6.6 \pm 4.2$$

Latest results indicate a phase transition in FOX-7 at above 5 GPa, at room temperature - the data is not yet analyzed completely.

Ab-initio Hartree-Fock Isothermal (0K) EOS Calculations using Gaussian 98

- simple rigid-molecule approximation
- molecule (bonds and angles) optimized using Crystal 98

Calculations by Dr. F. J. Zerilli and M. M. Kukla

Conclusions

 We are just beginning to understand the effect of high P and T. These effects will be greater as P and T approach that of detonation.

- Ab-initio calculations show that accuracy for molecules more complex than HMX require less assumptions
- FOX-7 experiments show anisotropic compression with a discontinuous change at about 1.1 GPa. Other vibrational mode shifts show increased H-bonding. Symmetry changes above 5 GPa are being investigated.
- Ab-initio calculations with optimized bonds do result in better fits to real data

